With the development of high-performance computing and big data applications, the scale of data transmitted, stored, and processed by high-performance computing cluster systems is increasing explosively. Efficient compression of large-scale data and reducing the space required for data storage and transmission is one of the keys to improving the performance of highperformance computing cluster systems. In this paper, we present SW-LZMA, a parallel design and optimization of LZMA based on the Sunway 26010 heterogeneous many-core processor. Combined with the characteristics of SW26010 processors, we analyse the storage space requirements, memory access characteristics, and hotspot functions of the LZMA algorithm and implement the thread-level parallelism of the LZMA algorithm based on Athread interface. Furthermore, we make a finegrained layout of LDM address space to achieve DMA double buffer cyclic sliding window algorithm, which optimizes the performance of SW-LZMA. The experimental results show that compared with the serial baseline implementation of LZMA, the parallel LZMA algorithm obtains a maximum speedup ratio of 4.1 times using the Silesia corpus benchmark, while on the large-scale data set, speedup is 5.3 times.
Loading....